Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
NPJ Genom Med ; 7(1): 52, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2008285

RESUMEN

Recent efforts have identified genetic loci that are associated with coronavirus disease 2019 (COVID-19) infection rates and disease outcome severity. Translating these genetic findings into druggable genes that reduce COVID-19 host susceptibility is a critical next step. Using a translational genomics approach that integrates COVID-19 genetic susceptibility variants, multi-tissue genetically regulated gene expression (GReX), and perturbagen signatures, we identified IL10RB as the top candidate gene target for COVID-19 host susceptibility. In a series of validation steps, we show that predicted GReX upregulation of IL10RB and higher IL10RB expression in COVID-19 patient blood is associated with worse COVID-19 outcomes and that in vitro IL10RB overexpression is associated with increased viral load and activation of disease-relevant molecular pathways.

2.
Cell Rep Med ; 3(2): 100522, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1650891

RESUMEN

The molecular mechanisms underlying the clinical manifestations of coronavirus disease 2019 (COVID-19), and what distinguishes them from common seasonal influenza virus and other lung injury states such as acute respiratory distress syndrome, remain poorly understood. To address these challenges, we combine transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues to define body-wide transcriptome changes in response to COVID-19. We then match these data with spatial protein and expression profiling across 357 tissue sections from 16 representative patient lung samples and identify tissue-compartment-specific damage wrought by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, evident as a function of varying viral loads during the clinical course of infection and tissue-type-specific expression states. Overall, our findings reveal a systemic disruption of canonical cellular and transcriptional pathways across all tissues, which can inform subsequent studies to combat the mortality of COVID-19 and to better understand the molecular dynamics of lethal SARS-CoV-2 and other respiratory infections.


Asunto(s)
COVID-19/genética , COVID-19/patología , Pulmón/patología , SARS-CoV-2 , Transcriptoma/genética , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/metabolismo , COVID-19/virología , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Regulación de la Expresión Génica , Humanos , Gripe Humana/genética , Gripe Humana/patología , Gripe Humana/virología , Pulmón/metabolismo , Masculino , Persona de Mediana Edad , Orthomyxoviridae , RNA-Seq/métodos , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/microbiología , Síndrome de Dificultad Respiratoria/patología , Carga Viral
3.
Microbiol Spectr ; 9(3): e0188221, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1522930

RESUMEN

Emergence of SARS-CoV-2 with high transmission and immune evasion potential, the so-called variants of concern (VOC), is a major concern. We describe the early genomic epidemiology of SARS-CoV-2 recovered from vaccinated health care professionals (HCP). Our postvaccination COVID-19 symptoms-based surveillance program among HCPs in a 17-hospital network identified all vaccinated HCPs who tested positive for COVID-19 after routine screening or after self-reporting. From 1 January 2021 to 30 April 2021, 23,687 HCPs received either mRNA-1273 or BNT162b2 mRNA vaccine. All available postvaccination SARS-CoV-2 samples and a random collection from nonvaccinated patients during the similar time frame were subjected to VOC screening and whole-genome sequencing (WGS). Sixty-two percent (23,697/37,500) of HCPs received at least one vaccine dose, with 60% (22,458) fully vaccinated. We detected 138 (0.58%, 138/23,697) COVID-19 cases, 105 among partially vaccinated and 33 (0.15%, 33/22,458) among fully vaccinated. Five partially vaccinated required hospitalization, four with supplemental oxygen. VOC screening from 16 fully vaccinated HCPs identified 6 (38%) harboring N501Y and 1 (6%) with E484K polymorphisms; percentage of concurrent nonvaccinated samples was 37% (523/1,404) and 20% (284/1,394), respectively. There was an upward trend from January to April for E484K/Q (3% to 26%) and N501Y (1% to 49%). WGS analysis from vaccinated and nonvaccinated individuals indicated highly congruent phylogenies. We did not detect an increased frequency of any receptor-binding domain (RBD)/N-terminal domain (NTD) polymorphism between groups (P > 0.05). Our results support robust protection by vaccination, particularly among recipients of both doses. Despite VOCs accounting for over 40% of SARS-CoV-2 from fully vaccinated individuals, the genomic diversity appears to proportionally represent VOCs among nonvaccinated populations. IMPORTANCE A number of highly effective vaccines have been developed and deployed to combat the COVID-19 pandemic. The emergence and epidemiological dominance of SARS-CoV-2 mutants with high transmission potential and immune evasion properties, the so-called variants of concern (VOC), continue to be a major concern. Whether these VOCs alter the efficacy of the administered vaccines is of great concern and a critical question to study. We describe the initial genomic epidemiology of SARS-CoV-2 recovered from partial/fully vaccinated health care professionals and probe specifically for VOC enrichment. Our findings support the high level of protection provided by full vaccination despite a steep increase in the prevalence of polymorphisms associated with increased transmission potential (N501Y) and immune evasion (E484K) in the nonvaccinated population. Thus, we do not find evidence of VOC enrichment among vaccinated groups. Overall, the genomic diversity of SARS-CoV-2 recovered postvaccination appears to proportionally represent the observed viral diversity within the community.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19/epidemiología , Estudios Epidemiológicos , Genómica , Personal de Salud , Epidemiología Molecular , SARS-CoV-2/genética , Vacunación , Vacuna nCoV-2019 mRNA-1273 , Adulto , Anciano , Vacuna BNT162 , COVID-19/virología , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mutación , New Jersey , Pandemias , SARS-CoV-2/clasificación , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus , Secuenciación Completa del Genoma , Adulto Joven
4.
mSphere ; 6(4): e0048021, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1371851

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs), harboring spike protein N-terminal domain (NTD) or receptor-binding domain (RBD) mutations, exhibit reduced in vitro susceptibility to convalescent-phase serum, commercial antibody cocktails, and vaccine neutralization and have been associated with reinfections. The accumulation of these mutations could be the consequence of intrahost viral evolution due to prolonged infection in immunocompromised hosts. In this study, we document the microevolution of SARS-CoV-2 recovered from sequential tracheal aspirates from an immunosuppressed patient on steroids and convalescent plasma therapy and identify the emergence of multiple NTD and RBD mutations. SARS-CoV-2 genomes from the first swab (day 0) and from three tracheal aspirates (days 7, 21, and 27) were compared at the sequence level. We identified a mixed viral population with five different S protein mutations (141 to 144 deletion, 243 to 244 deletion, E484K, Q493K, and Q493R) at the NTD or RBD region from the second tracheal aspirate sample (day 21) and a predominance of the S protein 141 to 144 LGVY deletion and E484K mutant on day 27. The neutralizing antibodies against various S protein lentiviral pseudovirus mutants, as well as the anti-SARS-CoV-2 total Ig and IgG, showed "U" shape dynamics, in support of the endogenous development of neutralizing antibodies. The patient's compromised immune status, the antirejection regiment, convalescent plasma treatment, and the development of neutralizing antibodies may have resulted in unique selective pressures on the intrahost genomic evolution, and this observation supports the hypotheses that VOCs can independently arise and that immunocompromised patients on convalescent plasma therapy are potential breeding grounds for immune escape mutants. IMPORTANCE Over a year of the COVID-19 pandemic, distinct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages have arisen in multiple geographic areas around the world. SARS-CoV-2 variants of concern (VOCs), i.e., B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), and B.1.617.2 (delta), harboring mutations and/or deletions in spike protein N-terminal domain (NTD) or receptor-binding domain (RBD) regions showed evidence of increased transmissibility and disease severity and possible reduced vaccine efficacy. In this study, we report the emergence of five different NTD and RBD mutations in an uncommon SARS-CoV-2 B.1.369 lineage from an immunosuppressed patient undergoing steroid and convalescent plasma therapy. The observation highlighted that VOCs can independently arise in immunocompromised populations undergoing anti-SARS-CoV-2 therapy, and enhanced measures will be required to reduce the transmission.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/terapia , Huésped Inmunocomprometido/inmunología , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/inmunología , Humanos , Inmunización Pasiva , Masculino , Persona de Mediana Edad , Mutación/inmunología , Pruebas de Neutralización/métodos , Pandemias/prevención & control , Unión Proteica/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Sueroterapia para COVID-19
5.
Genome Med ; 13(1): 118, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1318291

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has been associated with neurological and neuropsychiatric illness in many individuals. We sought to further our understanding of the relationship between brain tropism, neuro-inflammation, and host immune response in acute COVID-19 cases. METHODS: Three brain regions (dorsolateral prefrontal cortex, medulla oblongata, and choroid plexus) from 5 patients with severe COVID-19 and 4 controls were examined. The presence of the virus was assessed by western blot against viral spike protein, as well as viral transcriptome analysis covering > 99% of SARS-CoV-2 genome and all potential serotypes. Droplet-based single-nucleus RNA sequencing (snRNA-seq) was performed in the same samples to examine the impact of COVID-19 on transcription in individual cells of the brain. RESULTS: Quantification of viral spike S1 protein and viral transcripts did not detect SARS-CoV-2 in the postmortem brain tissue. However, analysis of 68,557 single-nucleus transcriptomes from three distinct regions of the brain identified an increased proportion of stromal cells, monocytes, and macrophages in the choroid plexus of COVID-19 patients. Furthermore, differential gene expression, pseudo-temporal trajectory, and gene regulatory network analyses revealed transcriptional changes in the cortical microglia associated with a range of biological processes, including cellular activation, mobility, and phagocytosis. CONCLUSIONS: Despite the absence of detectable SARS-CoV-2 in the brain at the time of death, the findings suggest significant and persistent neuroinflammation in patients with acute COVID-19.


Asunto(s)
Encéfalo/metabolismo , COVID-19/inmunología , Perfilación de la Expresión Génica/métodos , Inmunidad/genética , Inmunidad/inmunología , Transcriptoma , Plexo Coroideo/metabolismo , Expresión Génica , Redes Reguladoras de Genes , Humanos , Inflamación , Microglía , Corteza Prefrontal/metabolismo , SARS-CoV-2/genética
6.
Emerg Microbes Infect ; 10(1): 994-997, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1225582

RESUMEN

Spike protein mutations E484K and N501Y carried by SARS-CoV-2 variants have been associated with concerning changes of the virus, including resistance to neutralizing antibodies and increased transmissibility. While the concerning variants are fast spreading in various geographical areas, identification and monitoring of these variants are lagging far behind, due in large part to the slow speed and insufficient capacity of viral sequencing. In response to the unmet need for a fast and efficient screening tool, we developed a single-tube duplex molecular assay for rapid and simultaneous identification of E484K and N501Y mutations from nasopharyngeal swab (NS) samples within 2.5 h from sample preparation to report. Using this tool, we screened a total of 1135 clinical NS samples collected from COVID patients at 8 hospitals within the Hackensack Meridian Health network in New Jersey between late December 2020 and March 2021. Our data revealed dramatic increases in the frequencies of both E484K and N501Y over time, underscoring the need for continuous epidemiological monitoring.


Asunto(s)
COVID-19/virología , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , Genotipo , Humanos , Nasofaringe/virología , New Jersey/epidemiología , ARN Viral/química , ARN Viral/genética , Sensibilidad y Especificidad , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA